Talk:Science in the Re-imagined Series/Archive 1

From Battlestar Wiki, the free, open content Battlestar Galactica encyclopedia and episode guide

For an archived earlier discussion thread prior to February 8, 2006, click here.

Artificial Gravity

Be careful not to confuse Naturalistic SF with Hard SF. They have little to do with one another. --April Arcus 15:09, 9 December 2005 (EST)

Of course, in fact, they are quite opposite, but NSF takes a few elements from hard SF, though not in the extreme that hard SF defines itself. --Spencerian 16:18, 9 December 2005 (EST)

Another wrinkle in the whole artificial gravity can of worms: The ability to manipulate gravity fields opens the door to many other technologies, too. For example, a rudimentary tractor beam could be constructed by using your artificial gravity field to pull objects toward your ship. The reverse is probably possible -- using it to repel objects and projectiles for a sort of a deflector shield. Since the Colonials have none of these abilities and yet have apparently had artificial gravity for a long time (before the contruction of the Galactica), it stands to reason that whatever means they use to generate gravity is severely limited. --Zeratul 11:45, 8 February 2006 (EST)

Welcome to the Wiki, Zeratul. I agree; this limits whatever they use to gravity simulators rather than generators, given their power limitations and storyline limits. --Spencerian 13:06, 8 February 2006 (EST)
Thanks for the welcome, Spencerian. Long time reader first time contributor here. :) Another thing to consider is that whatever they use for gravity continues to work even when main power and control is lost, as in Valley of Darkness. Likely it would have a separate power source and controls as the life support systems do, meaning it's either passive or doesn't require much power to operate.
It's difficult to see, but in the miniseries the doomed botanical freighter seems to have domes on both the top and bottom of the ship, which would imply they have the ability to maintain several different gravitational vectors within a ship.
Another good reference would be Boomer's raptor in the miniseries, when she powers it down for the approach to Caprica. I think they were strapped in at the time though, so the gravity may or may not have been shut off.
I suspect, though, that this is something that will never really be explained but rather remain a plot-driven convenience. --Zeratul 14:29, 8 February 2006 (EST)

Sublight vs. FTL

The fact that Colonial One, an FTL-capable ship, made its way from Caprica to Galactica at Sublight tells us something else - 5.5 hours of engine burn consume less energy than a hyperspace jump to cover the same distance. --April Arcus 01:58, 11 December 2005 (EST)

Not necessarily. Two reasons why--first, FTL might not have been an option: either it was illegal, seen as too dangerous for travel within a system, deemed too uncomfortable for passengers, or pilots simply weren't trained to calculate a jump, any of which are potentially valid given Tigh's comment that it had been 20 years since a jump. Of course, that may raise a question as to why the drive was installed in the first place. (Regulations? Holdover from the first war?) Secondly, it seems unrealistic that it would take more energy to jump that small distance than to burn the fuel because the entire fleet can jump like 230 times in a row (33) without any refueling problems or the like. Drumstick 21:19, 30 December 2005 (EST)
I think that FTL flight is generally quite disconcerting to passengers, judging from Cally's take on it when we see Galactica make its first Jump in the Miniseries. So, sublight is preferable in most instances. I cannot determine from any episodes whether the fuel consumption is more or less when going at sublight over FTL. The comfort level is the most likely reason. --Spencerian 10:52, 1 January 2006 (EST)


If the energy density of Tylium is so much greater than fissile materials and has the added benefit of producing no fallout, and requiring no sophisticated trigger mechanism, why do the Colonials use nuclear warheads on their missiles rather than tylium bombs? Nuclear fallout has desirable side effects against organic targets, which explains Cylon use thereof, but what advantage does it offer human forces?

(Obviously, in real life it's a question of storytelling:
"For instance, in the Galactica mini-series, when the Cylons attack the colonists, they attack them with thermonuclear weapons. They don't attack them with lasers and photon torpedoes, and strange things that don't exist.
"When you see a planet nuked, and you see those mushroom clouds, and hear about the destruction of entire cities by nuclear weapons, that is a much more terrifying and frightening idea than if you're saying fifteen thousand photon torpedoes were launched at Caprica. One is real and one is not." [1]
"There would not be 'photon torpedoes' but instead nuclear missiles, because nukes are real and thus are frightening." [2]
"We use nukes. And these days, that’s truly scary. You use photon torpedoes and the audience goes 'oh, okay. shrug.'" [3]) --April Arcus 02:09, 11 December 2005 (EST)
Nukes have the desireable side effect of creating an electromagnetic pulse which disrupts all (currently) known forms of electronics. --Durandal 02:41, 8 January 2006 (EST)
And a side note, now that I think of it. Considering the supposed rarity of tylium, Nukes are also much easier to produce and much less of a waste of a valuable resource. Durandal 13:12, 8 January 2006 (EST)
You hit the nail on the head, Durandal. If you can, work up what you just said and add it to the article! --Spencerian 13:15, 8 January 2006 (EST)
Does not really fit in this article, whithout generating a new section for such a point. If anyone has a better idea for placement, I'm all ears. Durandal 13:25, 8 January 2006 (EST)
My own thoughts on the subject are A) Tylium is somewhat rare so it is difficult to mass produce nuclear warheads, but more importantly B) Baltar said that detonating a nuclear warhead near Tylium would "render it inert", not create a chain reaction. I think that Tylium must be "reactive/unstable" enough that it's a good fuel source (moreso than just Plutonium), however, it probably has the chemical property that it is very difficult to produce an explosive uncontrollable chain reaction with it. --Ricimer 18:13, 8 January 2006 (EST)
That would disagree with the extremely large tylium explosion seen at the end of "The Hand of God". I prefer Durandal's explanation. --April Arcus 18:24, 8 January 2006 (EST)
In Ricimer's defense, the explosion was caused by the precursor, the refined but unprocessed component that forms the fuel later. Precursor is more unstable or explosive than the fuel. There are chemicals throughout the Periodic Table that release tremendous energies, more so than plutonium. The problem is the process of controlling it. Else, hydrogen would be our fuel of choice for everything: common, cheap, and leaves a benign by-product. For the Colonies, tylium was their answer. I disagree that tylium is rare, although I think it is hard to find; the Fleet's luck in finding one rock of it also implies that a little tylium goes an awfully long way, but mining and processing it is a real bitch. --Spencerian 18:40, 8 January 2006 (EST)

Landings & Gravity

Unless I am completely mistaken, aside from whatever may be the 'standard' artifical gravity source aboard Galactica, it is explicitly stated that the actual landing pads in the flight pods rely upon magnitism to hold craft in place en route to the hanger.

"Viper Four-five-zero, skids down, mag-lock secure." (Kelly to Apollo upon touchdown aproximately 22 minutes into the miniseries)

Durandal 02:56, 8 January 2006 (EST)

Correct. On the flight deck, magnetism is used to secure landing Vipers. But in the hangar deck and manned areas of the ship, something else is used, since the humans (and many other virtually non-magnetic items in CIC and elsewhere) are kept from floating. It's an unexplained conumdrum that right now is just a writing convenience. If the article appears to be vague in that topic, do modify it. I created and generated much of this article, and sometimes I can get too wordy and the point gets muddled. --Spencerian 13:19, 8 January 2006 (EST)
I actually wrote this bit in response to note 2, which states it as a possibility as opposed to cannon-fact. I'm not quite sure HOW to rewrite it, unfortunately... Durandal 13:23, 8 January 2006 (EST)

Expensive claim...

I find the recent expense claim uncitable at best. There's absolutely no indication either way that financial expense played into utilizing FTL Jump technology in BSG. Therefore, unless we can get someone to point out where this info came from, I vote for its removal. Also, just because Galactica didn't perform a jump in 20 years doesn't really mean that it is normal for Colonail ships (military or otherwise) to rely on sublight travel alone. -- Joe Beaudoin 23:15, 1 February 2006 (EST)

I read it differently - the statement seems to infer expense from the fact that FTL travel is not used frequently, not vice-versa. --April Arcus 23:23, 1 February 2006 (EST)

I think they just didn't do it, because why risk the (albeit very very small) safety concerns of warping through space? (a wrong calculation and we could wind up in the sun", etc.) Remember, they really have FTL drive for two reasons: 1) It's a holdover from the Exodus (theory but not established fact and frankly I don't believe that), 2) they do have a "sphere of influence" beyond the 12 Colonies, not full-fledged other planets, just mining-camp colonies like Troy. So that's why they put in FTL; plus it's good to have instantaneous travel. --Ricimer 23:50, 1 February 2006 (EST)
It would be logical to assume that, with so many ships "up in the air", as it were, Jumping into another ship or even trade route may be a concern. I don't fully agree with the "holdover from the Exodus" theory either and it seems likely that FTL technology was put into place as a means of instantaneous transportation during wartime. (Imagine jumping out of harms way instead of fleeing from the enemy at sublight speeds; in fact, this is quite similar to Farscape and the Leviathan's ability to starburst.) -- Joe Beaudoin 09:52, 2 February 2006 (EST)
I think the current reasons are sufficient enough; there doesn't necessarily need to be a separate bullet point about "expense," especially because it is so vague and unexplained. Is it the cost of buying fuel that's expensive? Probably not, based on what we've seen so far in terms of tylium consumption. They seem to jump quite a bit and don't need to refuel very often. (Basically, just in Hand of God, and that's after jumping constantly for weeks. I mean, they could have been distributing Galactica's tylium to the other ships, but if Galactica has that much, it can't be that exorbitant of a fuel source, particularly so in peacetime when the ships were first loaded.) Is it wear and tear on the ship that costs money to fix? Maybe, but for the fleet to have lasted this long without any ships breaking down undercuts that theory. I mean, how else do you define expense? I'm not missing something here, am I? --Drumstick 02:19, 2 February 2006 (EST)

The Cancer Cure of Laura Roslin

One possibility we may want to consider is that of the Humano-Cylons being party based on nanotechnology. If the Cylons have nanobots in their blood, it would explain the selective destruction of cancer cells, and the quick repair of normal cells, and how such a small amount could completely cure the disease. Additionally, a Cylon-Human hybrid would have nanobots less likely to reject a normal human's system.

It would also explain the seeming contradiction in the Humano-Cylon's nature -- that they are close enough to human that even an autoposy cannot tell them apart, and yet somehow machine enough to upload their memories and consciousness.

Though this is my personal favorite theory, there's absolutely no canonical basis for it. --zeratul

It seems that the stem cell theory was the "answer" to this, as stated in the article, now with RDM voicing in on the original explanation that was edited away or revised before filming because it was too technical. Further, your theory conflicts with the established point that Cylon and human physiology is practically identical in appearance and function down to the cellular level, implying that nanotechnology would be identifiable medically. This is supported as well since, unless such nanotech is masked to work with human physiology, Roslin's body would have an autoimmune reaction, fighting off the fetal blood like in an Rh factor reaction. Aside from the established effects of the fetal blood used, only Baltar's Cylon detector can accurately discern Cylon from human. Funny, I just listened today to an article on National Public Radio that says that fetal stem cells "leak" from the placenta of each baby (born or unborn) into the mother's body, which become an "elite" (but small) force of cells that aid in protecting or repairing damage or disease in the mother for years, according to early research. I have to get that link to this article--it is very apropos here. --Spencerian 13:17, 8 February 2006 (EST)
Yes, I agree with you that the stem cells are the official explanation. I'm not sure if I buy it, however, as real-life stem cells can't spontaneously cure something as complex as cancer just by injecting them. Baltar's been wrong before. Yes, yes, genetically engineered Cylons are a possibility (but wouldn't that be easily detectable at the Colonials' current level of technology?). I guess for now we'll have to write it off as a "magical" effect of hybrids... Sigh :)
If the nanomachines were small enough they wouldn't be visible even under a microscope (haven't seen an SEM on the show yet), and could probably be designed to not show up to chemical tests as well -- especially if they were programmed to actively mask themselves. Again, probably not what they'll go with, just a theory I've been kicking around. --Zeratul 14:43, 8 February 2006 (EST)

With the caveat that I haven't seen the episode yet:why would Roslin's body have an autoimmune reaction when nanotechnology is used? In any case, the stem cell theory doesn't work. If Roslin indeed was at death's door, the damage to the healthy tissue is too great for stem cells to repair that in the necessary time frame. Protein needs to by synthesized, cells need to divide, etc. Plus, while stem cells can theoretically be used to create any organ, they still need the programming, which is not given in an adult body. They can be programmed in vitro, but they won't just form a liver if you inject them into the liver -the hormone gradients that existed during embryogenesis don't exist anymore, likewise the angiogenetic factors aren't around that would cause the cells to be supplied with the necessary nutrients. Although, ironically, the tumor might have spilled enough of those. And even if you get the cells to grow in the right places, you'd have to get them to stop growing as well, otherwise you've just replaced one cancer with another etc. etc... I think the cancer cure is just as much dramatic license as the "cylon and human physiology being identical". Given the silica pathways and the computer connectivity, there are quite obvious differences. I think that RDM did well to cut out the science since it is meaningless to the layperson and would likely have resulted in rolling eyes with people with expertise in the field. It is a contrived plot device, and trying to explain it away is likely to be futile. --OliverH. 15:18, 8 February 2006 (EST)

As an added point, I consider the issue with fetal cells as repairmen in the mother to be heavily overstated in the article here. The NPR contribution merely lists it as a hypothesis. There is no "appear", and there is several problems with at least the written part of the NPR contribution: It suggests that the fetal cells "could behave" as stem cells. However, there's more cells in a fetus than just stem cells, and in any case, at this stage, the cells aren't totipotent, i.e. capable of making ANYthing anymore, they have already diversified. It takes early embryonic stem cells for totipotency. I am also sceptical as far as these cells remaining "for life" goes: They'd be good candidates as a cancer cause rather than cure if they do. The other point is, as I tried to explain above, that these cells turn into specific tissue not just as an execution of an internal program, but as a response to external stimuli, such as hormones secreted by other cells in the vicinity. --OliverH. 15:36, 8 February 2006 (EST)

True, Oliver, the NPR article is actually educated speculation (hypothesis at best). As someone whose medical/biology experience is that of a layman, I welcome you, both to the wiki, as well as to improve in the scientific explanations on this page. Interesting stuff you noted there. We know, of course, that this is all dramatic license, but for writers to go the extra mile and make an attempt to base the cure on some credible level of scientific theorem on the topic (unlike *cough*Star Trek*cough*some shows I know) is a notable thing. --Spencerian 16:31, 8 February 2006 (EST)
Well, at least StarTrek made SOME good choices about their technobabble: Knowing fully well that any prediction on computer power and storage capacity would likely be outdated even before the end of the series, they invented totally fictious parameters. Likewise with many other things. While this still leaves the opportunity to violate basic laws of physics, at least it prevents the "no way it could work that way" effect. There's a reason people study for science, and a reason scientists specialize: It's such a vast field that it's practically impossible to know one's way around everything. So a writer has the choice between winging it or hiring a huge staff of scientists and engineers who give him some well-founded speculation on how things could possibly be explained. That ain't gonna fly, obviously, so one way or the other of winging it will have to do for most productions. Now of course a writer can pick up the latest newspaper articles he read and implement them, but the problem is that most newspaper articles on scientific issues aren't precisely written by people with a grasp of the field either. What's worse, even most scientists don't really concern themselves with the theoretic bases of a solid standard of evidence. Alas, this is especially true in the medical field, where people who went to med school do a lot of research while, unlike people who studied sciences, they could grab little scientific theory at least implicitly. Or, to point at something that bugs folks like me quite regularly: If an M.D. has one patient who shows strange symptoms or responds to an unusualy therapy, he happily submits a publication that goes by the type "case report". If, say, a molecular biologist in the biomedical field hears of such an incident, he will at first glance attribute it to a combination of factors valid for that patient only and dismiss it as anecdotal until he hears of a significant number of cases showing some specific pattern and statistical relevance. Which is why especially in this field, going by mainstream press publications is like tangoing through a minefield. If you comb the literature with fine enough a comb, you will come across plenty of "miracle" cases. However, hold a magnifying glass of stringent scientific standards of evidence at them and they go up in hot air. (Background: I'm currently on the last lap of a Ph.D. in the cancer research field, working on new diagnostic methods.) --OliverH. 19:29, 8 February 2006 (EST)
No, it is ridiculous to say that Star Trek handled technobabble well. That's why we call it technobabble. OTHER than that one point: they realized that computer power would increase so exponentionally by the 24th century that they just made up non-real units ("kiloquads", etc). Otherwise, it was laughable. Listen to RDM when he's talking about how Levar Burton seemed kind of good at spouting it off in season 1, so they just gave all of it to him. Now, to understand my reaction, I actually watch TNG repeats pretty much every other day. Just finished watching the end of "A Matter of Perspective"; yikes. Crazy technobabble (well, the signal bounced off of some mirrors, but it was so powerful, that when reversed it must have acted like a laser beam" etc. etc.)--The Merovingian 23:36, 8 February 2006 (EST)
Please cite where I said that Star Trek handled technobabble well. You will have difficulties doing so. I suggest you stop just slamming everything you don't like and stick to the facts. The simple fact that you don't like a solution doesn't make it "technobabble" per se, nor does taking any odd scientific hypothesis as truth make something good drama. If you get stomach cramps watching TNG, why do you watch it 'every other day'? --OliverH. 03:06, 9 February 2006 (EST)
"Well, at least StarTrek made SOME good choices about their technobabble" seems to heavily imply this position. And it's the only thing on.--The Merovingian 03:18, 9 February 2006 (EST)
Humanoid Cylon physiology does not contain "nanomachines"; human cells are also machines, if bio-chemical ones. What the Cylons appear to have done is to have artificially developed the genetic code for an artificial organism which is mostly like humans, but has had certain "upgrades" to it's DNA. I've seen nothing to even come close to speculation that they use "nanomachiens"; this verges into Star Trek Borg, Seven of Nine-esque technobabble, (shudder)., wait...(shudder). Sorry, lots of bad memories. Well, It's just needlessly complicated for this show and I don't think they'd stoop to that level. --The Merovingian 16:42, 8 February 2006 (EST)
Well, the thing is, it's a huge difference whether it's a biochemical machine or not. The human immune system is very efficient in fighting foreign "biochemical machines" in that it can recognize proteins that aren't part of the body. We know that some nonbiological materials such as graphite or teflon can also trigger an immune response, but this can easily be avoided by using different material. In an ideal scenario (not given here), nanorobots could even simply be coated with "self" proteins and be waved through by the immune system. There's a whole lot of literature on nanomedicine prospects at including entire books for free, or, for the less ambitious, the FAQ at And frankly, as a molecular biologist, I shudder at "upgrades" to DNA. A system that can give us everything from archaeobacteria to humans has already demonstrated that it is extremely flexible and yet efficient. I have a bit of an impression that "technobabble" is whatever solution one doesn't like ;) --OliverH. 19:29, 8 February 2006 (EST)
And, as a genetics major, I can tell you that quite a lot can be done with DNA; right now it's like flying a plane in the first decade of the 20th century; not impossible, but very hard. However, that doesn't mean that in theory, such advances are impossible. Given enought time it could be done. Further, you didn't really address the question. You just meandered around spouting off a lot of information on "nanomachines" without really explaining their practicality or applicability to this situation. And "a system already demonstreated this it is extremely flexible and efficient", this isn't a rebutal. You just made a long sentence stating that "yup, that's DNA for ya", but that specific sentence doesn't actually address the issue of nanomchines, genetic engineering, etc. at all. Please get back on topic. We are not fooled by lots of information being thrown at us and can tell when it lacks actual substance. --The Merovingian 23:41, 8 February 2006 (EST)
*sigh* I should have posted when I first read this, but figured everyone else could see what was going on. Apparently not. RiciMerovingian, please calm a moment. I think you jumped to the worst possible conclusion, rather than giving the benefit of the doubt. What I read as having occured is that Oliver misunderstood the statement about "updates to DNA" as meaning that the fundamental nature of DNA had been upgraded. I don't think he was intentionally obfuscating the topic with terminology that might be over a layman's head in order to "win". I think he was just confused.
Anyway, what was actually meant, as I read it, was that the DNA that makes one human has been altered in Cylons to have certain upgrades, not that they have better DNA (such that it is not, really, DNA), but that their DNA is almost human, except enccoded to be, say, more resiliant to diseases, quicker healing in the case of physical damage and (as an example of an "upgrade" I'd personally skip, if I were them) unable to procreate. Anyway, hopefully now everyone sees where we got off track, we can put unpleasantness behind and backup to where we were still on topic. --Day 00:28, 9 February 2006 (EST)
Day, the problem is that if their genes were in some way "better" as in more efficient etc. this could be easily discerned with 20th century level technology and could only go so far before the organism is not compatible with human organisms anymore as in clearly being recognized as foreign by the immune system and possibly even incompatible for procreation. In any case, it would also mean that physiology is far from identical. --OliverH. 03:06, 9 February 2006 (EST)
Merovingian, I realize you didn't like what I said, but claiming that my statements lacked substance when in fact, I made specific arguments and referenced them is quite off. I very much addressed the issue: You stated "human cells are also machines", implying that nanomachines would have no significantly different properties, which is plain false. I also explained further up why stem cells are not viable as an explanation. I never actually said that nanomachines are, in fact pointing out that the event was pure dramatic license. I simply rebutted the objections about nanomachines. As for lacking substance, as a genetics major, I can tell you that quite a lot can be done with DNA; right now it's like flying a plane in the first decade of the 20th century; not impossible, but very hard is devoid of any. It's simply a claim "I know better", without stating what it actually is you think you know nor whether it is actually supported by anyone else. Genetic engineering is no "upgrade of DNA". I suggest you decide what your concrete arguments are and support them and live with the fact that while you may not like the concept of nanomachines, it is far from technobabble. --OliverH. 03:06, 9 February 2006 (EST)
So called OliverH: A) No, you just threw around a lot of jargon, but after reading your penultimate entry, I realized you hadn't said anything of actual substance.
B) I will elaborate: When I say "The human cell is also a machine", this in NO WAY implies agreement with "nanomachines", as you state above. Some people (viewers who don't watch scifi or know even basic biology; not us) are stuck on the fact that "Cylons are machines!" and think of them as metal/plastic/silicon, and organic life as "tissue" etc. However, from my bio stuff, when I look at a human cell, I see a vastly complex clock of ATP, glucose, amino interacting mechanism of molecules of carbon chains, etc. Could not an artificial mechanism functioning along similar principles be created which was self sustaining?
C) At no time did I say genetic engineering was an "upgrade of DNA", layman. I didn't want to spout off on a lot of terminology that would simply be lost in a quick conversation. Putting words in my mouth, you are. Genetic engineering isn't an "upgrade" of "DNA"; genomes, on the other hand, can have new sequences added, etc. (The word "upgrade" implies some semi-magical, Chemical X-style super-charge). What I had in mind with the Cylons was that The DNA sequence itself is just a starting point: what about Genomic Imprinting in conjunction with DNA methylation, possibly even veering into Epigenetic Inheritance? Long story short: DNA in eukaryotes (for example, humans) is coated in a sheath of histone proteins. Changes in these can change gene expression. More importantly, adding a methyl group to a section of DNA can determine how it is expressed. Different amino acids then interact in different combinations than before. The human genome codes for many times more proteins than there is DNA coding for specific aa's. But using alternative splicing of mRNA, and altering the expression of DNA coding for different combinations of amino acids....things get a lot more interesting. We don't even fully understand how the 'histone code' works very well. That is my point: When I think of the Cylons I think of them using normal DNA, not nanomachines, but using like the English alphabet: there are 26 letters, and using these I can express all sorts of ideas on BattlestarWiki. These same 26 characters can also be used in a book like A Brief History of Time, to create a new Quantum Theory or something; far more complex than the simple messages I might use on AIM or something....But using the same basic building blocks of Carbon, Nitrogen, Hydrogen, Oxygen. --The Merovingian 03:35, 9 February 2006 (EST)
Merv... *sigh* What's the point of comments like "So called OliverH" and directing "layman" at him? In regards to the former, one could equally assert that you're "so called" Merovingian or that I'm "so called" Day. These are handles, nicknames and pseudonyms we use on the internet. Implying that someone's name here is somehow false seems either (because I know you're not dumb) disingenuous, juvenile or irrelevant, depending on interpretation. The latter of my examples seems only to be of the juvenile sort of comment. It's name calling, basically. And, before you start, don't attempt to say you were being honest as some kind of defense. With words like "layman" it's all a matter of perspective and I think it's clear from the general tone of your post that it was intended as a jab. Now... would the both of you (OliverH, included) calm down and not aim your posts at each other as if they were some kind of ballistae or something? It is possible to disagree with someone and not call them names. I have done it before. Even on the internet. --Day 04:31, 9 February 2006 (EST)
Sorry about that; I was in full-on Monty Python mode (French Castle: "So-called Arthur-King!", etc. etc. Yes they're all made up screenames; bit of (poor) internet humor I never get over). As for "layman", yes, even I thought that was a little too over the top, I must admit; just that he derided my ability to understand any of this, so I then responded by posting links to all of the things I was talking about in detail, etc. Unlike "Frackface" or something, "layman" implies levels of relatives knowledgibility, etc. Probably shouldn't have used that, sorry. --The Merovingian 04:49, 9 February 2006 (EST)

Ok, I'll try to simply restate the points since they seem to have been misunderstood and misrepresented consistently.

  • I have no opinion as to how anything DOES work in this part of the story, mainly because I think that there is no explanation for it other than dramatic license -no matter what RDM says. He studied political sciences, his knowledge of natural science is -as many comments show- quite limited.
  • Nanomachines aren't technobabble. They are a means to an end that is being heavily pursued by researchers as we write these pages. As the books I linked above show, in parallel to manufacturing obstacles including logistics being solved, people are anticipating possible medical uses and strategies to overcome obstacles in the achieving of the actual effect. They are pure, honest-to-god hard science-fiction, and only in that as of now, our clean room nanotechnology is just in development.
  • Stem cells have a big advantage: They can do anything a regular cell can do. Stem cells also have a big disadvantage: They can do anything a regular cell can do. From that spectrum of possibilities arrives the problem of regulation. And regulation is a pain. The more your tool can do, the more you have your work cut out for you that it does specifically what you want it to do and not something else. Especially in the body, where a whole lot of other signals that the cell is equipped to listen to because it is a cell, it would be next to impossible to have the cells follow a specific course of action. Nanomachines on the other hand are a)specialists and b)oblivious to the signalling by hormones or other subtance gradients unless specifically designed to respond to them.
  • Merovingians comments regarding using DNA like the english alphabet have a couple of problems: As Merovingian states, the english alphabet has 26 letters. The DNA alphabet has four. It's not an issue of the alphabet alone, however, but also of word size. The word size in the English language is variable, meaning a whole lot of different words can be constructed. The DNA word size is fixed at three. This limits the "meaning" to a very limited and defined set of possibilities. Now, of course we could draw up an alternative way of using the same concept, with more letters, or different word sizes. However, the consequence would be that whatever is the outcome of this is less related to us than every single lifeform we know of, from other primates to the "lowliest" bacteria. We could categorically rule out any conception of children, since the sets of genomes would require totally distinct "reading systems". The only viable alternative would be to reduce redundancy, the way amino acids have been added, or added frequency, over the course of evolution. However, redundancy also is a safeguard against effects of mutations -if the mutation doesn't make a difference, then there can be no harmful effect. So if we reduce redundancy, we increase susceptibility to mutations.
  • All the mechanisms listed by Merovingian above exist, of course. But they exist as part of a complex network of regulatory mechanisms that makes it practically impossible to say "Well, if we throw this switch, then this, and only this will happen". The effect is illustrated by the fact that most of these mechanisms can also be involved in Carcinogenesis. So repercussions of fiddling here are not limited, but can in fact be quite major. This leads to the key problem I am trying to address:

While we can hypothesize all we want about possible mechanisms for the cancer cure to work, or about how cylons work, the fact is that our choices are chiefly between which parts of what we see is plausible. If we take a lot of what we see about the Cylons as actually working, we'd have to reject the notions that they cannot be told apart from humans and that they are capable of procreation with humans. If we take the latter for granted, than the ways in which their physiology and their genes can differ from ours is severely limited. We are what we are and who we are because of a finely tuned system. Even minor changes to that system are likely to have major effects. --OliverH. 06:21, 11 February 2006 (EST)


1.) My impression was that baltar was sketching schematic representations of human and cylon antigens, not individual nitrogenous bases (which wouldn't really be relevant for the treatment he was proposing)

2.) Are you certain the hexagonal image is of uracil, and not another pyrimidine such as cytosine or thymine? --April Arcus 04:20, 2 February 2006 (EST)

2) Indeed. I've been going over my Human Molecular Genetics notes, and this is the only possibility. The difficulty you may have encountered is that Baltar is holding it upside down. Actually, I made a drawing of what we see "on screen" in the commercial (unfortunately, BSGwiki doesn't seem to want to upload bmp images; sorry).
There is a very long line coming of of a Nitrogen; this represent an R-linkage (that is, where the base connects to deoxyribose). Traditionally, (by Earth international convention) the R-linkage making Nitrogen is placed at the bottom of the diagram; plus, Baltar drew it backwords, but that's just viewing it from a different angle and changes none of the linkages. This is where we see "NH" on the bottom of that pic of Uracil I have; the H gets dropped and the N forms the R-linkage. I spent a long time trying to figure out which one it was before I determined that it is definately Uracil; none of the others. You can see this more clearly in the page on Nucleotide: the one we see has no NH2 subgroup linked to a carbon in the ring, so it's definately not Cytosine (Cytosine has 3 N's, Uracil and Thymine, only 2). It can't be thymine, because it has no H3C subgroup branching off of the ring. It actually looks exactly like the image of Uracil on the Nucleotide article.
1)****My entire point, Farago, is that Ron D. Moore stated in his podcast that ORIGINALLY, Baltar *was* making all of thse comparisons of DNA, stem cells, etc. and stating how Cylon **DNA** is different. However, he got in a panic, because as we all know he is nervous to use Technobabble (often, this is a very good thing) but this time he overreacted; now all of the messageboards are filled with complaints of "This wasn't explained well enough; he just said it's "blood was special" and drew two overlapping squares; this doesn't explain anything". In scenes that they deleted, Baltar goes into detail explaining what's different about it, comparing DNA structure, etc. Hopefully, we will see it in the DVD when these scenes are released. However, (as sometimes happens) footage from deleted scenes was used to make the commercial for the episode, and because I taped it off of tv (as opposed to downloading it) I was able to pause it and look at this. Really, they just cut a *LOT* of stuff out; it's not *JUST* "antigents"; the script for this scene was butchered in the editing room, and the explanation is actually a lot more complex than just "it's blood has no antigens"; Antigens for what? Antigens are things that trigger an immune response; in that sense, this isn't that much different from the O-blood type. --Ricimer 14:16, 2 February 2006 (EST)
I'm well aware of that. --April Arcus 23:24, 2 February 2006 (EST)

Speed check

In the section "Distances and Speeds..." two figures fro the speed of light are quoted in as many paragraphs. The first is correct: 3x10^8 meters/second. The second figure is 54x10^10 meters/second. Is this the speed of light in miles/second instead? (as the answer is given in miles/hour)

As a postscript regarding why the Galactica hasn't jumped in 20 years, the battlestar could have been part of a home or system fleet, much like Great Britain had an English Channel Fleet during the Napoleonic Wars. Sentinel75 23:18, 10 February 2006 (EST)

Hi, Sentinel. The figures you saw was the calculation of distance = speed(time). To avoid error, the travel time is converted from hours (5.5) to seconds. The speed of light is converted from miles/sec (186,282) to meters/sec. Once that's done, the result (distance) is in meters. Since Battlestar Wiki's audience is primarily American, I presented the result converted into miles as well.
Your idea on Galactica's need not to jump in 20 years is pretty good as you've reminded me of my Hornblower readings and historical information. I will add it to the page as an additional bullet. --Spencerian 19:16, 13 February 2006 (EST) Switch the units around and it still doesn't make sense. (m/s)/s = m/s ? no That formula is gibberish. I'll fix it. The original mistake happens to give the right answer because 5.4*10^11 is the result of the prior calculation in meters. --CalculatinAvatar 23:37, 21 February 2006 (EST)
Hi All,

There seems to be a plot hole in the miniseries, or you need to recalculate your ETA: Colonial Heavy 798 went to Galactica alone, but it was supposed to be escorted back by Apollo in an old Mark II Viper. So while the flight to Galactica could have taken 5.5 hours, at max acceleration, which was made possible by Colonial Heavy 798´s artificial gravity, the flight back would´ve taken much much longer, because Apollo´s Viper isn´t equipped with artificial gravity! (that´s apparent from what starbuck tells the nuggets in "act of contrition"). --Rafale 9:21 08 August 2006 (GMT +1)

Technically, her comment only implies that there is no artificial gravity in combat. Maybe it's too energy-expensive to use in combat; it would be counteracting about 562g for the miniseries trip, so using a lot of power is not unreasonable. --CalculatinAvatar(C-T) 04:23, 8 August 2006 (CDT)
Hmm, that opens the question what the difference between combat and non-combat mode power-consumption in vipers would be. I don´t think that there would be any difference. But I am willing to speculate, that colonial technology may have invented some kind of device which counteracts high acceleration g-force force ONLY when it is aligned with the dorsal angle of the viper, so that it is useless when the fighter yaws, turns, banks and slides.--Rafale 9:55 10 August 2006 (GMT +1)
Oh, and there´s another, *very* simple and pragmatic solution: Apollo and his Viper may have simply been "piggy-backing" on Colonial Heavy 798, or even have been in the docking bay and released when those alarming messages started dropping in over the wireless. There´s no reason why Apollo should have been made to spend 5.5 hours or more in a cramped viper cockpit all the time, when it was still officially peacetime. --Rafale 10:00 10 August 2006 (GMT +1)

Cylon missiles have contrails in space

Cylon missles.jpg

This is impossible. I think. --Bp 18:27, 13 March 2006 (CST)

They must have some exhaust stream, but not the puffy contrail visible there. --April Arcus 19:14, 13 March 2006 (CST)
I don't think that any exhaust would be visible because the exhuast is expanding rapidly and in space there is no resistance to that expansion. The density of the exhuast would quickly become so low that it would not be visible. They prolly just thought it would look better, but it bugs me anyway. --Bp 19:34, 13 March 2006 (CST)
I agree with you Bp, it bugs me too... In fact the fact that there are still sound effects for things going on in space REALLY BUGS ME!!! (Like when a Cylon Raider flies by) Before the Mini-Series I could have sworn I read that they were going to be faithful to science in that there wouldn't be "sound" in space. Perhaps I was wrong. I would really like to see a science fiction show ditch the sound effects in space. --cp.hayes 20:14, 13 March 2006 (CST)
If I remember correctly, RDM in the commentary for the Mini the he was going to have no sound in space but NBC forced him to change. As a compromise, he made it muted. --Talos 20:18, 13 March 2006 (CST)
Digging up an old topic, but I just wanted to chime in: the sound in space thing ALWAYS bugs me with scifi shows, but surely those action sequences would be really' boring without such effects? --Madbrood 12:09, 10 October 2006 (CDT)

Lagoon nebula

Loving the image of the milky way labelled with stuff but it wasnt made by anyone here and it links to imageshack so i think we should recreate it ourselves? --Mercifull (Talk/Contribs) 07:51, 28 June 2006 (CDT)

Since I don't know who owns that graphic, yes, having a reproduction of it (who can copyright a galaxy?) would be really great to have in case the link is lost. --Spencerian 14:52, 28 June 2006 (CDT)
(SCO might try.) That'd be great! It'd be much better to have a for sure creative commons version for display purposes. (Maybe a small thumbnail of it in the article, instead of the link, once it's "ours.") Is Merc on the job? --Steelviper 15:05, 28 June 2006 (CDT)
This? Its not perfect so ill try and find some more exact locations for earth etc, im not an astro physics dude or astronomer lol --Mercifull (Talk/Contribs) 15:35, 28 June 2006 (CDT)

Tylium in asteroids

In TOS, there were extensive tylium mines on the planet Carillon (which ultimately led to the planet's destruction). Of course, it's extremely volatile nature might render the lifespans of planets with extensive tylium deposits to be rather short (suffering the same fate as Carillon), whereas an isolated asteroid explosion would have less impact on the surrounding asteroids (unless there were some sort of a chain reaction). That's assuming the TOS can be referenced at all in this matter. --Steelviper 08:39, 29 August 2006 (CDT)

Well, I wouldn't put it here; the whole tylium thing is pseudoscience in TOS, where RDM seems to try to define something exotic without being hokey. Your observation could be useful on Tylium itself. --Spencerian 08:35, 30 August 2006 (CDT)

What about the flight pods on Pegasus?

The last sentance, in this section is based on a wrong assumption. Magnetism, or the electromagnetic interaction is quite a strong force. Actually it is a lot stronger than gravity, which is by far the weakest force. See for a quick explanation.--Eden 20:06, 22 September 2006 (CDT)

Well, I'd argue that the issue is not which force is weaker, but which force is more expensive (in terms of energy in per unit of force out) for the humans in Battlestar Galactica to generate. I don't think that's easy to establich either way. --CalculatinAvatar(C-T) 00:14, 23 September 2006 (CDT)


Page was "too long" even before I added the Blackbird stuff. --FrankieG 10:02, 23 September 2006 (CDT)

I tend to agree. At the same time, this is all very good stuff, so we should simply create a central article with subarticles, a'la The Twelve Colonies (RDM). --Spencerian 20:21, 23 September 2006 (CDT)
This is the kind of material that will grow as the series continues, so that is an excellent idea. --FrankieG 20:28, 23 September 2006 (CDT)

I am preparing a major condensing and reorganization of this article and several science-related articles under this article as an umbrella, like The Twelve Colonies (RDM), complete with a central navigation series template. The subarticles are:

Comments on the article subnaming or re-organization? --Spencerian 11:08, 10 October 2006 (CDT)

Looks good, perhaps accompanied with a template similar to the one used here on The Twelve Colonies series --Mercifull (Talk/Contribs) 11:32, 10 October 2006 (CDT)
That's exactly the format of the template. --Spencerian 18:50, 10 October 2006 (CDT)
Looks perfect to me! Good thinking, Spence! --BklynBruzer 07:49, 13 October 2006 (CDT)